
Report No. UIUCDCS{R{88{1415 UILU{ENG{88{1720

Process Management and Exception Handling

in Multiprocessor Operating Systems

Using Object-Oriented Design Techniques

by

Vincent Russo, Gary Johnston, Roy Campbell

July 26, 1991

REPORT NO. UIUCDCS{R{88{1415

Process Management and Exception Handling

in Multiprocessor Operating Systems

Using Object-Oriented Design Techniques

by

Vincent Russo, Gary Johnston, Roy Campbell

July 26, 1991

Department of Computer Science

University of Illinois at Urbana-Champaign

1304 W. University Ave., Urbana, IL 61801{2987

This work was supported in part by NASA under grant number NSG1471 and by AT&T METRONET.

Process Management and Exception Handling

in Multiprocessor Operating Systems

Using Object-Oriented Design Techniques

1

Vincent Russo, Gary Johnston, Roy Campbell

Department of Computer Science

University of Illinois at Urbana-Champaign

1304 W. University Ave., Urbana, IL 61801{2987

Abstract

The programming of the interrupt handling mechanisms, process switching primi-

tives, scheduling mechanisms, and synchronization primitives of an operating system

for a multiprocessor require both e�cient code in order to support the needs of high-

performance or real-time applications and careful organization to facilitate mainte-

nance. Although many advantages have been claimed for object-oriented class hier-

archical languages and their corresponding design methodologies, the application of

these techniques to the design of the primitives within an operating system has not

been widely demonstrated.

To investigate the role of class hierarchical design in systems programming, the

authors have constructed the Choices multiprocessor operating system architecture

using the C

++

programming language. During the implementation, it was found that

many operating system design concerns can be represented advantageously using a

class hierarchical approach, including: the separation of mechanism and policy; the

organization of an operating system into layers, each of which represents an abstract

machine; and the notions of process and exception management. In this paper, we

discuss an implementation of the low-level primitives of this system and outline the

strategy by which we developed our solution.

1 Introduction

The Choices

2

[1] [2] operating system architecture is organized as a class hierarchical so-

lution to the design problems of operating systems. Applications for which Choices has

been designed include numerical computations, embedded ight control and ground-based

monitoring systems, and controllers for high-speed circuit and packet switched networks.

The research was motivated by the di�culties of building multiprocessor operating systems

for specialized high-performance, real-time applications on large collections of heterogeneous

shared memory and networked multiprocessors. For example, current operating systems

1

This work was supported in part by NASA under grant number NSG1471 and by AT&T METRONET.

2

Class Hierarchical Open Interface for Custom Embedded Systems.

1

cannot be easily extended to manage dynamic load balancing, recon�guration, process mi-

gration, and heterogeneous CPU resource management. Similarly, the conventional operat-

ing system provides applications with a \kernel" that o�ers a prede�ned selection of system

services; this kernel cannot be easily extended to provide specialized services for particular

concurrent applications on particular parallel hardware. Choices uses objects and class hier-

archies to organize and facilitate solutions to both example problems. An operating system

implemented with the Choices architecture currently runs on the Encore Multimax

TM

.

Choices provides a hierarchy of classes from which the operating system designer may

choose or specialize components in order to build a custom system, an instance of a Choices

operating system. Classes within the hierarchy may be customized for speci�c hardware

environments or the needs of a particular dedicated application. Thus, the Choices archi-

tecture supports the concept of a family operating systems. The hierarchy contains abstract

primitive hardware-independent classes and system service primitive classes that respond

to application requests. Concrete subclasses of these classes de�ne objects in particular

Choices implementations. Thus, not only can an operating system be constructed in order

to e�ectively exploit a particular hardware architecture, but it can also be designed to pro-

vide speci�c applications with specialized support, avoiding any overheads associated with

features designed into a \general purpose" operating system that the application neither

requires nor uses.

A major motivation for this research was to determine if the class hierarchical object-

oriented approach could be used for the design and implementation of complete operating

systems. The C

++

programming language [3] was used exclusively in the implementation of

Choices. Therefore, this research is also an investigation of the appropriateness of implement-

ing complete operating systems in a language which supports object-oriented programming

and class hierarchies, as opposed to either adding features to an existing language or using a

more complex programming language that already has system programming features (e.g.,

Mesa or Ada

TM

).

Many operating systems are structured using a layered approach similar to that of the

THE system [4]. Each layer re�nes and enhances the services and functionality of the layer

upon which it is built. In general, however, layers do not shared a common internal organi-

zation. In Choices we have built a class hierarchical implementation of these layers using an

object-oriented methodology. We believe that this imposes a discipline within (and between)

layers which aids debugging, facilitates extensive code reuse, and eases modi�cation.

Choices design goals include support for:

� high-performance real-time and multiprocessing applications,

� custom systems development, including customization for particular hardware archi-

tectures and applications, allowing for the implementation of the \smallest" operating

system required for a given application,

3

3

General purpose operating systems often employ delayed bindings to provide exibility. Examples include

communication schemes, �le systems, access to other system services, and additional kernel code to handle

di�erent applications requirements and di�erent architectures and con�gurations. Choices can allow several

2

� operating systems research, facilitated by easy customization and module substitution,

� e�cient variable-grained parallelism,

� exploitation of virtual memory techniques for e�cient interprocess communication via

shared memory and shared object access,

� error recovery in parallel systems, and

� real-time interrupt handling, including both global system interrupts and processor

speci�c interrupts.

Some of the issues addressed in the design of Choices include:

� the problems associated with a parallel operating system kernel which allows multiple

processors to execute concurrently within the kernel,

� the avoidance of the inclusion of speci�c communication schemes into the lowest levels

of the operating system which would restrict the possibility of specializing the kernel

at higher levels in order to exploit the communication patterns of the application or

the communication mechanisms supported by the underlying hardware,

4

� the reduction of process context switching overheads,

� the avoidance of excessive cache and cache ushing overheads in cached-based multi-

processors,

� the avoidance of designing another distributed operating system, concentrating instead

on the design of a parallel operating system.

5

In this paper, we discuss the classes within Choices that support process dispatching and

execution, exception handling, process context switching, scheduling, and synchronization.

The classes provide the primitives from which higher-level layers of the operating system or

application-speci�c systems are constructed.

applications to coexist within the same computing system, each running its own customized Choices operating

system. Any communication required between the applications is supported by common Choices primitives

and operations on shared persistent objects.

4

Message-oriented kernels like the V Kernel [5], Accent [6], Amoeba [7], and MICROS [8] build speci�c

communication schemes into the lowest levels of the kernel. For example, some systems implement a few

ways of providing \virtual" messages like \fetch on access." However, these systems are not easy to adapt

to support other approaches such as \send process on read" or \remote procedure call on execute."

5

Many distributed multiprocessor Unix systems (Unix United [9], Locus [10], Mach [11], RFS [12], NFS

[13], Encore Multimax Unix (UMAX

TM

) [14], and Sequent Balance

TM

8000 Unix) [15] still impose Unix

limitations on the parallelism and performance of applications.

3

1.1 Related Research

The organization of an operating system is a di�cult task. Many di�erent approaches to

structuring operating systems have evolved in response to advances in hardware technology

and improvements in software engineering techniques. Approaches to the structuring of

operating systems [16] include a monolithic, kernel, process hierarchy, functional hierarchy,

and object-oriented capability structure.

Many simple microprocessor and some early batch operating systems are structured using

the monolithic approach: as a large program that invokes user programs as \subroutines."

These applications \return" as a result of an interrupt, a request for an operating system

service in the form of a system call, or the termination of the program.

Many current operating systems like UNIX

TM

are organized using a kernel approach in

which application programs execute on an \abstract CPU" that hides details of the real CPU

such as its concurrent use by other applications and its I/O hardware interface. Kernel's

often introduce the notion of a concurrent process to support the abstraction that permits

the sharing of a CPU among multiple applications. Typically, the software of the kernel is

minimal; the majority of operating system software executes outside of the kernel exploiting

the abstractions provided by the kernel.

Even though the software in a kernel should, by de�nition, be kept to a minimum, it

often is large and can bene�t from structuring. Layered systems, most notably THE [4] and

Venus [17], structure an operating system as a series of layers, or levels. Each layer is built as

a collection of concurrent processes and software modules that exploit the abstractions and

enhancements provided by the previous layer. By separating the various solutions required

to build an operating system, layering o�ers improved maintainability and portability.

However, it is not always easy to organize the processes into layers. Instead, a system

may be organized as a functional hierarchy [18]. Concurrent processes within the operating

system may access functions at di�erent levels within the hierarchy.

The object-oriented capability approach to structuring an operating system considers it

as a collection of objects that includes applications and system services. The interaction of

the objects is organized as a network of capabilities. One example of such an object-oriented

operating system is the Intel iAPX 432 system [19].

To summarize, operating systems have been organized by hiding machine dependencies,

by providing a machine independent kernel that hides the details of sharing of a CPU among

concurrent processes, by structuring system support into layers of processes, into a functional

hierarchy, or by representing the mechanisms, services, and abstractions of an operating

system as objects. Each approach has merits in terms of simplicity or coping with complexity.

Each approach may sometimes lead to implementations that could have been derived by a

di�erent approach. In the next section, we shall distinguish these previous approaches with

our own class hierarchical, object-oriented approach.

4

1.2 Structuring an Operating System Using Class Hierarchies

In Choices, we exploit class hierarchies and inheritance to create operating system classes

that are customizable for particular hardware and applications. We believe that the careful

use of class hierarchies to build an operating system results in a major improvement in the

organization and design of the system. Not only do classes permit the expression of the

standard operating system design techniques, but they also represent and organize major

design concerns that could not be expressed easily within existing design approaches. In this

section, we describe the design methodology that is permitted by class hierarchies.

Both the monolithic and kernel approaches to organizing operating systems are suitable

for small operating systems but do not scale up well because of the lack of any internal

structure. The operating system kernel approach has the desirable property of separating

an operating system into a set of cooperating processes communicating through the kernel.

The cooperating process model is very important because it structures asynchronism in an

intuitive manner. Layering the contents of a kernel is a practical solution to structuring

large operating systems that has been applied to many of today's major operating systems

[11] [20] [21] [22].

The major di�culty with building layered operating system kernels is determining the

layer in which processes or functions should be implemented and structuring the internals

of a particular layer. Since each layer may only rely on the processes or functions provided

by lower layers, careful planning is necessary. For example, in virtual memory systems, the

disk device drivers should be provided by a lower level than the virtual memory paging

mechanism since the memory paging mechanism must use the disk as a backing store. But,

the memory that the disk drivers use for I/O bu�ers must be coordinated with the virtual

memory management. Such circular dependencies are the most di�cult problem in designing

the layers of an operating system. The object-oriented capability approach helps to reduce

the problems caused by such cyclic dependencies since capabilities can be used to represent

arbitrary networks. However, such arbitrary networks lack structure (unless the objects are

somehow organized into layers.)

The use of class hierarchies to structure operating systems is presented here as an or-

thogonal issue to the layering of a system. The hierarchies are used as a means to structure

the internals of a layer or kernel. Within Choices, object-oriented programming and inheri-

tance are used to build a kernel from layers that are collections of objects; some objects may

provide system functions and others may de�ne or contain concurrent processes. A process

de�ned within one layer may access objects in other layers. The class inheritance mechanism

and upward type coercions allow references to these objects in a structured manner. Class

hierarchies and object-oriented programming also have the software engineering advantages

that include code reuse and modular programming.

The class hierarchical approach encourages three methods of code reuse. The �rst method

is gained from the use of a language with class and inheritance provided that care is used

in the construction of the subclasses. By building class hierarchies in which methods are

specialized incrementally through subclassing, much code can be shared between classes.

The second form of code reuse is particular to layered operating systems. Common

5

system functions and utilities are often repeated within di�erent layers. For example, queues,

lists, hash tables, mutual exclusion primitives, semaphores, processes, and schedulers may

be used in several layers including the application layer. Classes allow the reuse of the

de�nition and implementation of abstract algorithms and data structures throughout the

layers of a system. This form of code reuse is enhanced by de�ning generic classes to

represent the abstract algorithms and data structures of useful operating system concepts,

subclassing these classes to apply them to the speci�c needs of an operating system, and

then instantiating these classes to produce objects within a speci�c layer.

The third method of reuse is a re�nement of the �rst method applied to a family of

operating systems. An abstraction of some operating system component within the family

may be de�ned as a class with many di�erent subclasses each implementing a \version" of

that class for a particular hardware or a particular application's requirements. The di�erent

versions of the class can all share a large portion of the implementation through the parent

class if they are similar. This form of reuse simpli�es the customization of the family of

operating systems for a target machine and application.

The class hierarchical approach also supports customization. Customization and modi�-

cation of a family of systems is guided and aided by subclassing and by the structure induced

by the class hierarchy. The class hierarchy provides the systems designer with a conceptual

view of how the components of an operating system function. It classi�es components of a

system with respect to their function; by learning the function of a parent class, the possible

function of a subclass can be inferred [23] [24]. In the class hierarchy for Choices, only the

top few classes need to be mastered to achieve a good overall view of the system. In addi-

tion, subclassing permits the behavior of a speci�c part of a Choices operating system to be

modi�ed without changing the rest of the system.

All machine dependencies, operating system mechanisms (e.g., page table management),

operating system policies (e.g., schedulers) and design decisions are encapsulated within

classes in Choices. Design decision are implemented as a potential set of subclasses. An

abstract class speci�es a general behavior and protocol (its methods) that may be used on

instances of the class and its concrete subclasses. A concrete class re�nes the implementa-

tion of an abstract class. Abstract classes are used in our system design to specify operating

system abstractions. Concrete subclasses are used to specify particular versions, policies

or mechanisms that implement the abstraction. Wherever possible, the class hierarchy is

constructed so that similar sub-hierarchies can be specialized from a common ancestor hier-

archy. (Not only do classes support reuse, but the structure induced by a hierarchy may also

be reused, including code reuse of the classes in the hierarchy.) Overall, we have constrained

the \fan out" to be small (2{7) to encourage code reuse.

In later parts of this paper we will discuss the use of this methodology to design process

management and exception handling within Choices.

6

remove

destructor

ProcessContainer

constructor

add

Exception

raise

destructor

constructor

MemoryRange

destructor

constructor

reserve

release

physicalAddress

Process

destructor

constructor

Method Legend

Inherited method

Rede�ned method

New method

Object

constructor

destructor

Figure 1: Major Base Classes in the Choices Hierarchy.

2 The Choices Class Hierarchy

Before going into the details of the process and exception classes, a brief overview of the

Choices class hierarchy is appropriate. Some of the major classes in the �rst level of the

Choices class hierarchy are shown in Figure 1. Each subclass rede�nes and adds methods

de�ned for class Object . Class MemoryRange provides the base for storage management

in a Choices operating system. Instances of class Process are the basic units of execution

in a Choices system. A Process is represented by the information necessary to execute

it. This is usually the processor state information (i.e., machine registers) and information

about the virtual memory in which it expects to execute. Processes are scheduled and

executed within a Choices system by being added to and removed from ProcessContainers.

Class ProcessContainer is specialized to provide for Process execution and scheduling. Class

Exception provides the basis for exception handling, including traps and interrupts. The

raising of an Exception usually causes Exception-speci�c movement of Processes between

7

ProcessContainers.

To aid in portability, objects in this design are grouped into layers. The Germ is the

lowest layer. It is a set of objects that encapsulates the major hardware dependencies and

provides an \idealized" hardware architecture to the rest of the layers in the system.

6

The

Germ provides the mechanisms for managing and maintaining the physical resources of the

computer. Objects de�ned for use in the Germ for speci�c architectures are instances of

subclasses of generic classes that de�ne interfaces to the hardware memory management,

the hardware exception, and physical processor mechanisms. Intermediate layers in the

system include memory management, exception management, scheduling and naming. The

Kernel is the highest layer in the system. It de�nes the interface provided by the system

to applications. A complete operating system consists of Germ objects appropriate for the

particular hardware of the system, objects belonging to the middle layers, and Kernel objects

appropriate for the applications that are supported by the operating system. Individual

applications that run on top of the new system can further augment the class hierarchy with

their own classes.

All operating system components, including support for parallelism and synchronization,

are implemented using C

++

. The language is e�cient and portable. It implements object-

oriented programming and class hierarchy semantics with minimal runtime overhead and

thus is ideal for operating system programming. There are, of course, a few small assembly

language routines whose functionality could not be implemented directly in C

++

. It is easy

to interface C

++

to assembler in order to achieve things impossible in the language itself (for

example, loading stack pointers and memory management unit registers). However, even

these assembly routines are mostly machine-dependent implementations of methods of low-

level classes, thus preserving the object-oriented implementation even to the lowest levels of

the class hierarchy. C

++

was chosen because it supports class hierarchical object-oriented

design while imposing negligible run-time overhead.

In the following sections, we will describe in more detail some of the classes which imple-

ment the functions of interrupt handling, process dispatching, context switching, scheduling,

and synchronization.

3 Processes

Choices supports the concept of a computation that is composed of a potentially large

number of lightweight, independent parallel processes similar to those described in [5] [11]

and [25]. An application may use multiple communicating processes to achieve concurrency

and parallelism. A single one of these processes is represented by an instance of the Choices

Process class. Each instance of the Process class represents an independent ow of control

that can share memory through the memory management mechanisms described below.

In order for such an abstraction to be useful and to allow e�cient process migration, the

6

The \virtual" machine provided to the higher layers of the system by the Germ objects is not a virtual

copy of the actual hardware as in the IBM VM/370 [22] operating system, but rather an idealized architecture.

8

amount of information kept on a per-process basis and the context switching e�ort between

two processes is minimized.

3.1 Memory Management

A complete discussion of the Choices memory management system is beyond the scope of

this paper.

7

A general description of the way memory is managed is, however, necessary in

order to discuss process management and context switching in Choices.

Memory management in Choices is implemented by a hierarchy of classes with the ab-

stractMemoryRange class as root. The classes in this hierarchy support virtual memory, the

sharing of memory, and memory protection. An instance of a MemoryRange class represents

a contiguous range of memory addresses, as the name implies. MemoryRange is subclassed

to represent the di�erent kinds of memory in a system. The most important example is

class Space. A Space is used to represent a range of virtual memory addressable by a Pro-

cess. The class SpaceList is provided for the aggregation of Spaces. It is subclassed into the

Domain class which represents the complete view of virtual memory that may be accessed

by a Process. The list of Spaces in the Domain of a process is consulted during memory

management decisions. Sharing of memory between processes can be accomplished either

through shared Domains or through di�erent Domains which list common Spaces.

3.2 Process Implementation and Context Switching

Each Choices Process references a Domain that speci�es its virtual memory. Usually, the

executable code, initialized data, uninitialized data, and stack are represented as Spaces

within this Domain. The constructor for a process is parameterized by an initial Domain,

initial processor state (for example, program counter or stack pointer), and arguments to

the process. Methods for Processes alter their Domains, manipulate scheduling parameters,

and handle preemption and dispatching.

The state of a process is recorded by storing the processor state and register contents

within a Process object. A small supervisory stack is maintained by each Process object in

order to handle preemption. The dispatch method of the Process class is used by the process

switching code in Choices to reload a CPU's registers with copies that are stored within the

Process object. Context switching overhead is lowest between Processes which execute within

a common Domain since if the Domain of the Process being dispatched matches the Domain

in which the processor is currently executing, no memory context switching is necessary.

Interrupt and real-time processing require the ability to switch between processes with

minimum context switching overhead. Since an executing process accesses a stack, code, and

data represented by the various Spaces contained within its Domain, fast context switching

can be achieved by locking the memory of a Space as resident. Locking memory to be

resident within a Space causes the corresponding virtual addresses to be validated and the

associated real memory to be locked as resident in physical memory. In addition, a Space

7

A more complete description is contained in [1].

9

may be locked as addressable by all Processes. A context switch to a process that addresses

only resident pages in resident virtual memory incurs only register loading overhead.

8

Locking can optimize the performance of interrupt handlers and real-time processes as de-

sired. Such processes may still be protected from other applications by running the processes

in the privileged state of the processor and setting the memory protection of the globally

shared Spaces to exclude access in non-privileged mode. Thus, even though a Space may be

locked as addressable by all Domains, it can remain protected from unprivileged processes.

The Kernel and Germ memory of a Choices system are implemented as sets of such Spaces.

3.3 ProcessContainers

Primitives for scheduling, blocking and dispatching processes in Choices are built by using

instances of the ProcessContainer class and its subclasses. A ProcessContainer, as the

name implies, is a container of Processes. Scheduling and dispatching algorithms in Choices

involve transferring Processes between ProcessContainers. Figure 2 shows some of the classes

in Choices which implement Processes and ProcessContainers.

Subclasses of ProcessContainer impose queueing disciplines on the Processes that they

contain. Some subclasses are de�ned to only contain a single Process. The ProcessContainer

class is abstract and de�nes the operations add (for inserting Processes into the container),

remove (for removing Processes from the container), and isEmpty (for testing whether the

container is empty or not). Subclasses can rede�ne these methods, for example, to add and

remove Processes in FIFO, LIFO, or priority order.

ProcessContainers represent an operating system abstraction that may be re�ned to

implement queues of processes (e.g., \run queues" and \ready queues"), and may be used

to store processes that await an event or are blocked on a Semaphore operation. Scheduling

in Choices is discussed in more detail in a later section.

3.4 Exception Handling

Low level exceptions are introduced in Choices by the abstract Exception class and re�ned

by its subclasses. The Exception class de�nes the method raise to intercept the exception

condition. The Exception class has subclasses HardwareException and SoftwareException.

Figure 3 shows the base classes of Choices which implement exception handling. The raise

method for a HardwareException is called directly as a result of a hardware trap or inter-

rupt. HardwareExceptions are used to encapsulate the hardware exception mechanism of the

underlying architecture. The raise method of a SoftwareException is called voluntarily by

an executing process. Exceptions are the primary objects in Choices whose methods cause

Processes to be moved between ProcessContainers. Raising an Exception is the only way for

a process to suspend its own execution.

8

Plus MMU cache ushing overhead, if the old and new Domains di�er.

10

isEmpty

constructor

RoundRobinScheduler

remove

destructor

add

FIFOScheduler

isEmpty

destructor

constructor

remove

add

ProcessContainer

add

isEmpty

destructor

constructor

remove

SingleProcessContainer

add

constructor

destructor

isEmpty

remove

CPU

constructor

enableInterrupts

disableInterrupts

destructor

remove

add

isEmpty

destructor

constructor

Object

changeDomain

getSchedulerInfo

Process

constructor

dispatch

destructor

setSchedulerInfo

Figure 2: Process and ProcessContainer Base Classes.

11

DivideByZeroTrap

destructor

constructor

raise

constructor

�xPageFault

raise

destructor

AbortTrap

Exception

raise

destructor

constructor

Object

constructor

destructor

destructor

constructor

raise

handler

SoftwareException

destructor

handler

raise

constructor

SemaphoreException

constructor

destructor

raise

Trap

destructor

raise

constructor

clockTick

TimeSliceInterrupt

destructor

constructor

HardwareException

raise

destructor

raise

constructor

await

InterruptException

IllegalInstructionTrap

destructor

raise

constructor

Figure 3: Exception Handling Base Classes.

12

3.5 The CPU ProcessContainer Subclass

A special subclass of ProcessContainer, CPU, represents an actual physical processor. Multi-

processing �ts naturally into this model since a system can consist of more than one instance

of the CPU class, each corresponding to an actual processor. The CPU class rede�nes the

add method to dispatch and execute a Process on the processor it represents. The remove

method of the CPU class is used by Exceptions to implement CPU preemption. It returns

the Process for which the CPU has most recently saved a context. To e�ect the transfer

of the CPU from one process to another, the context of the executing process must �rst be

saved. This is accomplished by raising an exception. When an Exception is raised, the con-

text of the currently executing process is saved on its per-process supervisory stack. These

supervisory stacks exist one per Process object and need only be large enough to hold a single

process context. Once the state is saved on this stack, the raise method invokes the Excep-

tion handler. The Exception handler is executed independent of the state of any particular

process by switching to a per-processor supervisory stack.

9

Exception handlers usually ex-

ecute code which removes the Process from the CPU, stores it in a ProcessContainer, and

adds another Process to the CPU. Not all classes of Exceptions behave this way; some de�ne

the raise method to save only a minimum amount of context because, after processing the

exception, it will immediately resume the process. The CPU class de�nes methods to install

Exception objects as the handlers of hardware Exceptions.

Exceptions can be raised synchronously by a Process voluntarily invoking an Exception

object's raise method, or asynchronously by the raise method of an Exception being \in-

voked" via an interface to the hardware exception mechanism. Hardware exceptions are

discussed in more detail in the following sections. Combined uses of ProcessContainers and

Exceptions, most notably in the implementation of semaphores, are discussed later.

3.6 Hardware Exceptions

The HardwareException class has several major subclasses. The Trap class provides a mech-

anism for handling traps that a process may generate as a direct result of its execution. This

includes machine traps (for example, divide-by-zero and illegal instruction), virtual memory

access and protection errors (for example, page faults of various types), and explicit program

traps (for example, a \system call" via an \SVC" instruction). The Trap handler services

the exception condition within the context of the faulting Process and then resumes, or

terminates that Process.

Interrupts occur asynchronously and, in general, have nothing to do with the currently

executing process. The InterruptException subclass of HardwareException de�nes a new

method, await. The await method is invoked by a Process to block its execution until the

9

This stack is created by the CPU class during its initialization. If the exception handling code was

executed within the context of any particular Process (i.e. if a Process attempted to remove itself from the

CPU and added itself to another ProcessContainer), a race would exist where the Process could be removed

from the second ProcessContainer and added to another CPU thus resulting in the Process being executed

by two processors at the same time.

13

After

Before

3

2

1

W

W

R

R

CPU

B

A

Object

Interrupt

Queue

Ready

Raise Message

(from hardware)

Object

Interrupt

A

Queue

B

CPUReady

Figure 4: Interrupt Processing.

interrupt occurs, at which time it can be resumed. InterruptExceptions must be awaited

if they are not to be missed. The raise method of the InterruptException class saves the

context of the interrupted process, adds it to the system's \ready queue" ProcessContainer

and resumes the Process awaiting the occurrence of the interrupt. Figure 4 shows the

sequence of events in more detail. Before the interrupt occurs, Process R is running on the

processor and Process W is awaiting the interrupt's occurrence. The InterruptException

object contains as an instance variable a ProcessContainer to hold the Process awaiting

the interrupt. In the �gure, Process R is removed from the CPU object and added to the

ready queue ProcessContainer. Finally Process W is removed from the interrupt objects

ProcessContainer and added to the CPU object.

In addition to the synchronous hardware interrupts, described above, that must have

a process awaiting them described above, Choices provides asynchronous interrupts. For

example, a time-slice interrupt is handled by an instance of the TimeSliceInterrupt class.

TimeSliceInterrupts are not awaited. When one occurs the running process is pre-empted,

removed from the CPU, and placed on the ready queue ProcessContainer. Another process

14

is then chosen from the ready queue ProcessContainer and added to the CPU.

The above example highlights an advantage of the class hierarchical design method.

Instances of ProcessContainer and its subclasses can occur many di�erent places within a

system and in many di�erent layers. The abstract ProcessContainer class de�nes an interface

that is known throughout the system. In a strictly layered system, if the function of a

scheduler were de�ned at level L

n

, any level lower than L

n

would have to de�ne it's own

methods of keeping lists of processes. With a class hierarchy, however, once the interface

of ProcessContainer is de�ned, subclasses and instances can be created and used anywhere

throughout the system.

10

Comprehension and maintenance is facilitated if all subclasses of

ProcessContainer behave, in the abstract sense, alike.

4 Semaphores

In Choices, a semaphore [4] is implemented by the Semaphore class and its methods, P and

V, de�ned abstractly as follows:

P(Semaphore):

count := count - 1;

if (count < 0) {

Block on the queue of Processes waiting on the Semaphore.

}

V(Semaphore):

count := count + 1;

if (count <= 0) {

Wakeup one of the waiting Processes.

}

A constructor is also provided by the Semaphore class to set the initial value of the semaphore.

In order to maximize parallelism in a shared-memory multiprocessor environment, a

semaphore must not only provide mutual exclusion for the execution of its methods, but it

must also ensure that its methods are completed quickly, without interruption. For example,

disabling interrupts will provide mutual exclusion on a single processor system, but not on

a multiprocessor shared memory system. A test-and-set operation on a lock may be used

to guarantee that a method is executed in mutual exclusion on a multiprocessor. However,

unless interrupts are disabled, test-and-set operations can lead to many wasted CPU in-

struction cycles if a process is suspended by an interrupt or time-slice expiration while it

has possession of the lock. Therefore, the correct implementation for a multiprocessor test-

and-set spin lock should �rst disable interrupts to prevent the process attempting the lock

being preempted, and then attempt to acquire the lock with a test-and-set operation. When

10

This same e�ect cannot easily be achieved with languages that do not support upward coercion of types

through the class hierarchy.

15

the process has completed its critical section, the lock should be released and interrupts

reenabled.

A queue of suspended processes is associated with each semaphore. A mechanism is

required to transfer a process from the CPU to this queue when the process requests a

blocking P method on the semaphore. Correspondingly, a mechanism must exist to move

a blocked (enqueued) process from this queue into the system ready queue when another

process executes a V method on the semaphore.

A new subclass of SoftwareException, SemaphoreException, is used to handle the blocking

of processes requesting a P method on a busy Semaphore. An instance of a SemaphoreEx-

ception, a ProcessContainer, and an integer count variable (along with a test-and-set spin

lock to guarantee its atomic update) are the only instance variables of the Semaphore class.

The ProcessContainer is used to hold the Processes waiting on the Semaphore.

11

When the P method of a Semaphore blocks a process it places it on the queue of processes

awaiting the Semaphore. This requires removing the process from the CPU and adding it

to the Semaphore object's ProcessContainer. As previously discussed, the convention for

removing a Process from the CPU (that is, to suspended it) is to raise an Exception. The

raise method of a SemaphoreException is used by the Semaphore's P method to achieve

this. The handler for the SemaphoreException chooses another Process to run by removing

a di�erent Process from the system ready queue ProcessContainer and adding the result

to the CPU.

12

If necessary, the V method of a Semaphore \wakes up" a blocked process

by removing it from the Semaphore's ProcessContainer and adding it to the system ready

queue.

5 Schedulers

Di�erent subclasses of ProcessContainer are used to implement di�erent scheduling disci-

plines or policies. The operating system designer that implements a new scheduling policy

creates a new subclass of ProcessContainer (or, more likely, subclasses an existing scheduler).

The new scheduler rede�nes the add and remove methods in order to provide the desired

behavior. The Process selected by the scheduler for removal is determined by its scheduling

policy.

The scheduler interacts with both Processes, and CPUs. Each CPU has an associated

scheduler from which a Process may be removed for execution when the CPU becomes idle.

11

The queueing behavior an individual Semaphore can be modi�ed by changing the type of ProcessCon-

tainer storing the queued Processes. Currently, all Semaphores in Choices use a subclass of ProcessContainer

that imposes FIFO ordering on adds and removes.

12

After adding the blocking process to the semaphores ProcessContainer, the handler must release the

atomic access lock on the semaphores count variable on behalf of the semaphore. The lock was acquired

prior to decrementing and testing the value of the count variable. This must be done at this point to avoid

the race of releasing it any earlier and having another process test the count before the blocking process has

been enqueued. The SemaphoreException therefore requires access to both the semaphores ProcessContainer

and lock. These are passed to the Exception in its constructor which is called by the Semaphore classes

constructor.

16

In the Encore Multimax Choices implementation many CPUs are associated with the same

scheduler; but there may be more than one scheduler within the system. This allows the

system con�gurer to group CPUs within a Choices system, associating each group with

a di�erent scheduler, thus allowing the partitioning of CPUs according to the scheduling

policies that apply to particular application(s). This assignment need not be static, and the

system can be repartitioned as necessary.

Each Process has an instance of a SchedulerInformation class associated with it that

is maintained by the scheduler; it is left undisturbed by the rest of the system. In order

to provide time-sliced scheduling, a time-slice or quantum is associated with each process

(which may be a value that represents \run to completion"). The quantum of a process

may be set by the scheduler's remove method. When a Process is added to a CPU for

execution, a timer is initiated which will cause a TimeSliceInterrupt Exception to be raised

when the time-slice expires. When a Process is removed from a CPU, the amount of unused

time is recorded in another �eld of the Process object. A value of zero indicates that the

Process used the entire quantum. When the Process is added to a scheduler, the scheduler

can examine this information and use it for future scheduling decisions or for updating the

SchedulerInformation it maintains for the Process.

As an example, consider a system in which a single, centralized scheduler exists; that

is, all Processes and CPUs are associated with the same scheduler. In addition, suppose

this scheduler imposes a time-sliced scheduling discipline on the system. We begin with the

execution of an Exception handler which has removed a Process from the CPU and added

it to some other ProcessContainer. At this point the Exception handler removes a Process

from the scheduler associated with the CPU on which it is executing and adds it to the

CPU. When the Process is added to the CPU, its time-slice quantum is examined. If this

quantum is not \run-to-completion," a timer is armed which will raise a TimeSliceInterrupt

Exception when the quantum expires. When the current Exception handler completes its

work the Process it has added to the CPU is dispatched and begins execution. Assuming

that no other Exception is raised on this CPU, the timer will raise the TimeSliceInterrupt

Exception at the end of the time-slice. The handler for this Exception removes the current

Process from the CPU and adds it to the Process' scheduler. At this point we have come

full circle and the Exception handler removes another Process from the CPU's scheduler for

execution.

Current Choices schedulers include a FIFOScheduler for run-to-completion scheduling

of Processes and a RoundRobinScheduler which provides simple time-slicing. Other sched-

ulers can be built either by deriving specialized subclasses from existing scheduler classes

or by creating wholly new ProcessContainer subclasses. An example of the latter is the

MultiLevelFeedbackQueue, which contains several RoundRobinSchedulers. These schedulers

represent the di�erent priority levels within the queue and each provide for a di�erent time-

slice quantum, if desired. A MultiLevelFeedbackQueue maintains the dynamic priority level

of the process. A Process added to the queue has its priority updated to be either the next

lower level (if it used up its entire time-slice quantum) or the highest priority level (if it re-

linquished the CPU voluntarily, perhaps to perform I/O). The Process is then placed on the

17

Preliminary Choices Performance Data

Encore Multimax 32032 (0.75 MIP)

Operation Encore 4.2 BSD Unix Choices

System Call Overhead 173�sec 39�sec

Process Creation 26.3msec 3.8msec

Context Switch | 536�sec

Shared Memory Example

13

0.032sec 0.022sec

Table 1: Performance Data.

internal queue associated with its new priority. Removing a Process from a MultiLevelFeed-

backQueue involves removing a Process from the highest level internal queue which is not

empty.

The ProcessContainer is a powerful abstraction that may be used to provide encapsulation

of physical CPUs and temporary storage of processes.

6 Summary

A Choices kernel currently runs on a 10 processor Encore Multimax that supports the classes

and concepts discussed in this paper.

Of particular concern during the development of the system is whether or not the class

hierarchical approach can support the construction of entire operating systems. In this pa-

per we discuss how this approach can promote the structuring of levels within an operating

system, encourage reuse, encapsulate decisions and policies, and permit alternate implemen-

tation.

C

++

was chosen as an implementation language because it supports class hierarchies and

inheritance while imposing negligible performance overhead at run-time. A software monitor

is being used to evaluate the performance of Choices on an Encore Multimax with NS32032

processors. Although it is di�cult to provide a meaningful performance measurement of

an operating system, we have obtained results that are encouraging. These are shown

in Table 1. The \system call" overhead (including a trap and change to supervisor state)

compares favorably with UNIX and is only about four times the overhead of a normal

procedure call. The Process creation time includes creation of new virtual memory Spaces

for the Process. Further tuning will improve these �gures.

Current e�ort is devoted towards improvement and further implementation of commu-

nication and persistent object support. Future plans include an object-oriented �le system,

an advanced interface compiler, and tools for con�guring Choices systems. Once Choices is

stable, the code will be placed in the public domain to promote research into customized

operating systems.

13

The example creates four processes on independent processors, three sum a ten column array and the

fourth sums the three resulting sums. The Multimax multitasking library package was used under UMAX.

18

References

[1] Roy Campbell, Vincent Russo & Gary Johnston, \The Design of a Multiprocessor Oper-

ating System," Proceedings of the USENIX C++ Workshop (1987).

[2] Roy H. Campbell, Gary M. Johnston & Vincent F. Russo, \Choices (Class Hierarchical

Open Interface for Custom Embedded Systems)," Operating Systems Review 21 (July

1987), 9{17.

[3] Bjarne Stroustrup, The C++ Programming Language, Addison-Wesley Publishing Com-

pany, Reading, Massachusetts, 1986.

[4] Edsger W. Dijkstra, \The Structure of the THE-Multiprogramming System," Communi-

cations of the ACM 11 (May 1968), 341{346.

[5] David R. Cheriton, \The V Kernel: A Software Base for Distributed Systems," IEEE

Software (April 1984).

[6] Richard F. Rashid & George G. Robertson, \Accent: A Communication Oriented Network

Operating System Kernel," Proceedings of the Eighth Symposium on Operating Systems

Principles (December 1981).

[7] Andrew S. Tanenbaum & Sape J. Mullender, \An Overview of the Amoeba Distributed

Operating System," Operating Systems Review (July 1981).

[8] L. D. Wittie & A. Van Tilborg, \MICROS - A Distributed Operating System for MI-

CRONET - A Recon�gurable Network Computer," in Tutorial: Microcomputer Networks,

H. A. Freeman and K. J. Thurber, ed., IEEE Press, 1981, 138{147.

[9] D. R. Brownbridge, L. F. Marshall & B. Randell, \The Newcastle Connection, or UNIXes

of the World Unite!," Software - Practice and Experience (1982).

[10] G. Popek, B. Walker & others, \LOCUS: A Network Transparent High Reliability Dis-

tributed System," Proceedings of the Eight Symposium on Operating Systems Principles

15 (December 1981).

[11] Mike Accetta, Robert Baron, William Bolosky, David Golub, Richard Rashid, Avadis

Tevanian & Michael Young, \Mach: A New Kernel Foundation for UNIX Development,"

Proceedings of the Summer 1986 USENIX Technical Conference and Exhibition (June

1986).

[12] Andrew P. Rifkin & others, \RFS Architectural Overview," USENIX Conference Pro-

ceedings (1986).

[13] Dan Walsh & others, \Overview of the Sun Network File System," USENIX Conference

Proceedings (January 1985).

[14] Encore, Encore Multimax Technical Summary, Encore Computing Corporation, 1986.

[15] Sequent, Balance 8000 Guide to Parallel Programming, Sequent Computer Systems, July

1985.

[16] Lubomir Bic & Alan C. Shaw, The Logical Design of Operating Systems, Prentice Hall,

Englewood Cli�s, New Jersey, 1988, Second Edition.

19

[17] Barbara H. Liskov, \The Design of the Venus Operating System," Communications of the

ACM 15 (March 1972), 144{149.

[18] A. N. Habermann, L. Flon & L. Cooprider, \Modularization and Hierarchy in a Family

of Operating Systems," Communications of the ACM 19 (May 1976), 266{272.

[19] Intel, System 432/600 System Reference Manual, Intel Corporation, 1981.

[20] D. M. Ritchie & K. Thompson, \The UNIX Time-Sharing System," Communications of

the ACM 17 (July 1974), 365{375.

[21] HarveyM. Deitel, \Case Study: VAX," in An Introduction to Operating Systems, Addison-

Wesley, Reading, MA, 1984, 505{533.

[22] S. E. Madnick & J. J. Donovan, \Virtual Machine/370 (VM/370)," in Operating Systems,

McGraw-Hill, New York, 1974, 549{563.

[23] Daniel C. Halbert & Patrick D. O'Brien, \Using Types and Inheritance in Object-Oriented

Programming," IEEE Software (September 1987).

[24] Walter F. Tichy, \What Can Software Engineers Learn from Arti�cial Intelligence?,"

IEEE Computer (November 1987).

[25] Paul R. McJones & Garret F. Swart, Evolving the UNIX System Interface to Support

Multithreaded Programs, Systems Research Center, Digital Equipment Corporation, Palo

Alto, California, September 28, 1987.

20

Contents

1 Introduction 1

1.1 Related Research : 4

1.2 Structuring an Operating System Using Class Hierarchies : : : : : : : : : : : 5

2 The Choices Class Hierarchy 7

3 Processes 8

3.1 Memory Management : 9

3.2 Process Implementation and Context Switching : : : : : : : : : : : : : : : : 9

3.3 ProcessContainers : 10

3.4 Exception Handling : 10

3.5 The CPU ProcessContainer Subclass : 13

3.6 Hardware Exceptions : 13

4 Semaphores 15

5 Schedulers 16

6 Summary 18

References 19

i

